Tightening the Belt: The Impact of Greenbelts on Housing Affordability

Alexander Hempel University of Alberta

14th European Meeting of the Urban Economics Association Mar 28th. 2025

Greenbelt Policies

■ With steady urbanization, pressure on cities to build new housing has resulted in *urban sprawl*

Greenbelt Policies

- With steady urbanization, pressure on cities to build new housing has resulted in *urban sprawl*
- Urban sprawl has many environmental costs:
 - Destruction of natural landscapes, ecosystems, cropland, outdoor amenities and increased pollution

Greenbelt Policies

- With steady urbanization, pressure on cities to build new housing has resulted in *urban sprawl*
- Urban sprawl has many environmental costs:
 - Destruction of natural landscapes, ecosystems, cropland, outdoor amenities and increased pollution
- Concern over urban sprawl has prompted the creation of Greenbelt policies and urban growth boundaries
 - Policy that restricts development on undeveloped land
 - Examples: Portland, London, Seoul, Toronto and more

Greenbelt Policies

- With steady urbanization, pressure on cities to build new housing has resulted in *urban sprawl*
- Urban sprawl has many environmental costs:
 - Destruction of natural landscapes, ecosystems, cropland, outdoor amenities and increased pollution
- Concern over urban sprawl has prompted the creation of Greenbelt policies and urban growth boundaries
 - Policy that restricts development on undeveloped land
 - Examples: Portland, London, Seoul, Toronto and more
- However, while greenbelts stop sprawl, they may ↑ housing costs

- Housing prices have ↑ rapidly in many countries
 - From 2014-2024: USA (56%), UK (55%), Canada (83%)
 - Large burden on low-income renters and young people

- Housing prices have ↑ rapidly in many countries
 - From 2014-2024: USA (56%), UK (55%), Canada (83%)
 - Large burden on low-income renters and young people
- Widely discussed policy solution: relax zoning regulations
 - Would allow for housing to be built more easily
 - To some this extends to greenbelts too (see UK, Ontario)

- Housing prices have ↑ rapidly in many countries
 - From 2014-2024: USA (56%), UK (55%), Canada (83%)
 - Large burden on low-income renters and young people
- Widely discussed policy solution: relax zoning regulations
 - Would allow for housing to be built more easily
 - To some this extends to greenbelts too (see UK, Ontario)
- Contentious policy debate: housing affordability versus environmental protection

- Housing prices have ↑ rapidly in many countries
 - From 2014-2024: USA (56%), UK (55%), Canada (83%)
 - Large burden on low-income renters and young people
- Widely discussed policy solution: relax zoning regulations
 - Would allow for housing to be built more easily
 - To some this extends to greenbelts too (see UK, Ontario)
- Contentious policy debate: housing affordability versus environmental protection
- Despite the intense debate, there is little empirical evidence on the impact of greenbelt policies on housing prices

■ Research Question: How much do greenbelts account for rising housing prices in cities with them?

- Research Question: How much do greenbelts account for rising housing prices in cities with them?
- Context: The Ontario Greenbelt around Toronto introduced in the early-2000s
 - World's largest contiguous greenbelt at almost 2 million acres

- Research Question: How much do greenbelts account for rising housing prices in cities with them?
- Context: The Ontario Greenbelt around Toronto introduced in the early-2000s
 - World's largest contiguous greenbelt at almost 2 million acres
- Approach: Build and estimate a flexible model of a housing market with land use regulations
 - Model has granular geographies and significant heterogeneity across space

- Research Question: How much do greenbelts account for rising housing prices in cities with them?
- Context: The Ontario Greenbelt around Toronto introduced in the early-2000s
 - World's largest contiguous greenbelt at almost 2 million acres
- Approach: Build and estimate a flexible model of a housing market with land use regulations
 - Model has granular geographies and significant heterogeneity across space
- Estimation: Use two IV strategies to precisely estimate housing elasticities
 - Housing Supply Simulated residential market access IV (Han & Baum-Snow, 2023)
 - Housing Demand Heritage designations IV
 - Use transaction and development-level data aggregated to the census tract level

- Research Question: How much do greenbelts account for rising housing prices in cities with them?
- Context: The Ontario Greenbelt around Toronto introduced in the early-2000s
 - World's largest contiguous greenbelt at almost 2 million acres
- Approach: Build and estimate a flexible model of a housing market with land use regulations
 - Model has granular geographies and significant heterogeneity across space
- Estimation: Use two IV strategies to precisely estimate housing elasticities
 - Housing Supply Simulated residential market access IV (Han & Baum-Snow, 2023)
 - Housing Demand Heritage designations IV
 - Use transaction and development-level data aggregated to the census tract level
- Policy Counterfactual: Simulate housing market had Greenbelt not been implemented

- By 2010, the Greenbelt ↑ avg. housing prices by 2.9% compared to a no greenbelt scenario
 - Translates to ↑ \$600 CAD in annual rent or 1% of annual pre-tax renter income

- \blacksquare By 2010, the Greenbelt \uparrow avg. housing prices by 2.9% compared to a no greenbelt scenario
 - Translates to ↑ \$600 CAD in annual rent or 1% of annual pre-tax renter income
- However, this only accounts for a small share of the overall increase in prices
 - lacktriangle Prices rose an average of 72% from 2001-2010 ightarrow Ontario Greenbelt explains only 4%

- By 2010, the Greenbelt ↑ avg. housing prices by 2.9% compared to a no greenbelt scenario
 - Translates to ↑ \$600 CAD in annual rent or 1% of annual pre-tax renter income
- However, this only accounts for a small share of the overall increase in prices
 - $lue{}$ Prices rose an average of 72% from 2001-2010 ightarrow Ontario Greenbelt explains only 4%
- Why does the Greenbelt only account for a small share?
 - lacktriangle Reduction in Greenbelt construction ($\downarrow \sim 20\%$) only makes up 0.6% of total housing stock
 - Lots of demand to live within city independent of greenbelt
 - Not because unregulated areas \rightarrow a completely binding Greenbelt only \uparrow prices by 5%

- By 2010, the Greenbelt ↑ avg. housing prices by 2.9% compared to a no greenbelt scenario
 - Translates to ↑ \$600 CAD in annual rent or 1% of annual pre-tax renter income
- However, this only accounts for a small share of the overall increase in prices
 - $lue{}$ Prices rose an average of 72% from 2001-2010 ightarrow Ontario Greenbelt explains only 4%
- Why does the Greenbelt only account for a small share?
 - lacktriangle Reduction in Greenbelt construction ($\downarrow \sim 20\%$) only makes up 0.6% of total housing stock
 - Lots of demand to live within city independent of greenbelt
 - Not because unregulated areas \rightarrow a completely binding Greenbelt only \uparrow prices by 5%
- Effect of Greenbelt can be entirely offset by moderate relaxation of zoning within city

Contribution to the Literature

- Greenbelt & Anti-Sprawl Policies: Koster (2023), Walsh (2007), Quigley & Swoboda (2007), Glaeser, Gyourko & Saks (2006), Bento et al. (2006), Anas & Rhee (2007), Brueckner (2007), Cunningham (2007), Deaton & Vyn (2010)
 - First credible quantitative estimates of greenbelt effect along with Koster (2023) (studies UK)
 - My model studies short-run impact accounting for frictions and heterogeneity in housing supply

Contribution to the Literature

- Greenbelt & Anti-Sprawl Policies: Koster (2023), Walsh (2007), Quigley & Swoboda (2007), Glaeser, Gyourko & Saks (2006), Bento et al. (2006), Anas & Rhee (2007), Brueckner (2007), Cunningham (2007), Deaton & Vyn (2010)
 - First credible quantitative estimates of greenbelt effect along with Koster (2023) (studies UK)
 - My model studies short-run impact accounting for frictions and heterogeneity in housing supply
- Land Use Regulations: Anagol et al. (2021), Kulka et al. (2023), Glaeser & Gyourko (2018), Cheshire et al. (2018), Hilber & Vermeulen (2016), Turner et al. (2014), Saiz (2010), Glaeser & Ward (2009), Ihlanfeldt (2007), Mayer & Somerville (2000)
 - Role of land use regulations on the urban fringe compared to within the city

Ontario Greenbelt

- The Greater Toronto Area saw a period of immense growth in the 2000s
 - Grew 16% between 2000 and 2010
 - For comparison, NYC grew 2.2%, LA 2.8%

Figure: Ontario Greenbelt

Ontario Greenbelt

- The Greater Toronto Area saw a period of immense growth in the 2000s
 - Grew 16% between 2000 and 2010
 - For comparison, NYC grew 2.2%, LA 2.8%
- Opposition to urban sprawl led to the creation of
 - The Oak Ridges Moraine in late-2001
 - The Ontario Greenbelt in 2005
- Largest contiguous Greenbelt in the world (2M acres)
- Protects prime agricultural land, forest, wetlands and headwaters for the region from development

Figure: Ontario Greenbelt

Data Sources

- Teranet Housing Transactions Data (GeoWarehouse)
 - All transactions for Peel, York and Toronto from 2000-2010
- Teranet Parcel Data
 - Parcel data for all parcels in the Greater Toronto Area
 - Matched to transactions data through parcel PINs
- Altus New Housing Construction Data
 - All housing development projects in the GTA since 2000
 - Includes info on number of units, date of first sale and closest intersection
- Public information on observable characteristics
 - Satellite imagery from Agriculture and Agri-food Canada (AAFC) (every 5 years since 2000)
 - Heritage designations and dates of designation from municipal sources

Motivating Evidence I

Starts Over Time

- Plot when projects started being sold by type of unit
- After the Greenbelt was introduced
 - ↓ in Single Family Homes
 - ↑ in Condominiums
- Suggests Greenbelt may have effect
 - ↓ sprawl & ↑ density
- Trend could occur for many reasons
 - Preferences? Building costs?

Figure: Total Units Brought to Market By Type, 2000-2010

Motivating Evidence II

Event Study

$$\ln H_{jt} = \sum_{g=-G}^{-2} \alpha^g D_{jt}^g + \sum_{k=0}^K \alpha^k D_{jt}^k + \nu_j + \eta_t + \varepsilon_{jt}$$

- D_{jt}^k : treatment indicator for Greenbelt status at a time gap, k, since treatment
 - Treatment: > 50% of CT in GB
 - $lue{}$ Sample: > 25% of CT developable
- In H_{jt} : log of housing by CT, j, at time t
- $\nu_j \& \eta_t$: CT and Year FEs

 $\textbf{Not Causal:} \ \, \mathsf{Spillovers \ into \ control} \, \rightarrow \, \mathsf{Need \ model} \quad \mathsf{Figure:} \ \, \mathsf{Housing \ in \ Restricted \ Tracts \ Versus \ Unrestricted}$

Housing Supply

 \blacksquare A convex, constant elasticity cost function yields a supply curve for housing type i, in CT, j

$$H_{ijt}^{\mathcal{S}}(P_{ijt}) = \eta_{\mathsf{ij}} \left(P_{ijt}\right)^{arphi_{\mathsf{ijt}}}$$

Writing as percentage changes over time and taking logs yields

$$\ln H_{ijt} = \ln H_{ijt-1} + \eta_{ij} + \varphi_{ijt} \left(\ln P_{ijt} - \ln P_{ijt-1} \right)$$

- lacksquare φ_{ijt} housing supply elasticity that varies across type, location and time
 - Specify as a linear function of tract-level characteristics: $\varphi_{ijt} = \gamma_0 + \gamma_1 x_{ijt}$
 - Can change as characteristics do (eg. loss of developable land/greenbelt)
- Imposing the condition that $H_{ijt} \ge H_{ijt-1}$ means that housing is an irreversible investment

Housing Demand

A Nested, Location Choice Framework

- Households choose where to live, first by choosing an upper-tier municipality (eg. Peel) and housing type (eg. condo) pair and then choosing a census tract within that nest
 - Generates more flexible substitution patterns than plain logit

Housing Demand

A Nested, Location Choice Framework

■ Household utility can is then a function of location characteristics, where B signifies the nest

$$U_{ijt} = \underbrace{\alpha P_{ijt} + \mathsf{x}_{ijt} eta + \xi_{ijt}}_{\delta_{ijt}} + \overline{\epsilon}_{Bt} + (1 -
ho) \epsilon_{ijt}^{-}$$

■ If the error term $\epsilon_{ijt} = \bar{\epsilon}_{Bt} + (1-\rho)\bar{\epsilon}_{ijt}$ is T1EV, the share in location j in housing type i is

$$s_{ijt} = \frac{\exp\left(\delta_{ijt}/(1-\rho)\right)}{\sum_{ij \in \mathcal{B}} \exp\left(\delta_{ijt}/(1-\rho)\right)} \frac{\left(\sum_{ij \in \mathcal{B}} \exp\left(\delta_{ijt}/(1-\rho)\right)\right)^{(1-\rho)}}{1+\sum_{h} \exp\left(\delta_{ht}\right)}$$

• Multiplying the shares by market size, M_t , yields the housing demand curve, $H_{ijt}^D(P_{ijt})$

Supply Curve Estimation

$$\Delta \ln H_{ijt} = \tilde{\eta_{ij}} + (\gamma_0 + \gamma_1 x_{ij}) \Delta \ln P_{ijt} + \varepsilon_{ijt}$$

- lacktriangle $\Delta \ln H_{iit}$ Δ in the housing stock supplied at time t
- lacksquare $\Delta \ln P_{iit}$ Δ in the price index at time t
- x_{ij} observable characteristics of housing type i in census tract j
 - % of developable land, unit type (Condo, Urban, Suburban), in an "urban growth center"
 - $> \gamma_0, \gamma_1$ parameters of interest

Supply Curve Estimation

$$\Delta \ln H_{ijt} = \tilde{\eta}_{ij} + (\gamma_0 + \gamma_1 x_{ij}) \Delta \ln P_{ijt} + \varepsilon_{ijt}$$

- lacktriangle $\Delta \ln H_{iit}$ Δ in the housing stock supplied at time t
- lacksquare $\Delta \ln P_{ijt}$ Δ in the price index at time t
- lacksquare x_{ij} observable characteristics of housing type i in census tract j
 - % of developable land, unit type (Condo, Urban, Suburban), in an "urban growth center"
 - \blacksquare γ_0 , γ_1 parameters of interest

Challenge: The change in price is an endogenous/simultaneously determined variable

- $lue{}$ Use the Simulated Δ In Residential Market Access (RMA) (Han & Baum-Snow, 2023)
- Idea: Exogenous shocks to labour demand in one location shocks housing demand in nearby areas
- Use Bartik-shifts in aggregate labour demand to isolate exogenous shocks to labour demand

Predicted Supply Elasticities Across Space

Housing Demand

lacktriangle Dividing by the outside option and taking logs of the housing demand curve, $H^D_{ijt}(P_{ijt})$

$$\ln s_{ijt} - \ln s_0 = \alpha P_{ijt} + x_{ijt}\beta + \xi_{ijt} + \rho \ln s_{ijt|Bt}$$

- s_{ijt} the share of housing type i in census tract j of all housing
- lacksquare s₀ the share of population living in the outside option (regions surrounding GTA)
- $x_{ijt}\beta + \xi_{ijt}$ Captured by observable characteristics and unit FEs
 - Sociodemographic characteristics of neighbourhood (education, income)
 - Housing characteristics (age of housing stock, lot size, footprint, distance to CBD)
- $s_{ijt|Bt}$ the within-nest share of a location and unit type

Housing Demand

lacktriangle Dividing by the outside option and taking logs of the housing demand curve, $H^D_{ijt}(P_{ijt})$

$$\ln s_{ijt} - \ln s_0 = \alpha P_{ijt} + x_{ijt}\beta + \xi_{ijt} + \rho \ln s_{ijt|Bt}$$

- s_{ijt} the share of housing type i in census tract j of all housing
- lacksquare s₀ the share of population living in the outside option (regions surrounding GTA)
- lacksquare $x_{ijt}eta+\xi_{ijt}$ Captured by observable characteristics and unit FEs
 - Sociodemographic characteristics of neighbourhood (education, income)
 - Housing characteristics (age of housing stock, lot size, footprint, distance to CBD)
- \bullet $s_{ijt|Bt}$ the within-nest share of a location and unit type

Challenge: The change in price is again an endogenous/simultaneously determined variable

- $lue{}$ Use a heritage designations instrument $\rightarrow \uparrow$ designations $= \downarrow$ supply shifter
- lacktriangle Idea: Once designated a building cannot be redeveloped without significant difficulty + correlated with active neighbours

Measuring Heritage

- Collect data on all designated heritage properties and the date of listing for the GTA
- Calculate Heritage exposure as the # of properties within 10 km
 - Discounted by distance using a weight of $\frac{1}{log^2}$
- Significant variation in heritage listings across the region
 - Not strictly correlated with distance to CBD
 - Interact instrument with unit type to vary by type
- \blacksquare \uparrow distance-discounted designations within 10 km \rightarrow \uparrow more

community coordination & \precedet land available for development

Figure: Heritage Designations, 2010

Housing Demand Curve Results

	OLS		IV - By Radius			IV - With Lags	
	10km	10km	5km	10km	15km	Lag 1-Yr	Lag 2-Yr
Prices (in \$10,000)	0.0083*** (0.0017)	0.0035** (0.0014)	-0.0376*** (0.0035)	-0.0395*** (0.0038)	-0.0390*** (0.0037)	-0.0385*** (0.0038)	-0.0369*** (0.0036)
ρ			0.2301*** (0.0289)	0.2341*** (0.0299)	0.2328*** (0.0297)	0.2424*** (0.0316)	0.2515*** (0.0328)
Controls	X	\checkmark	✓	✓	✓	✓	✓
Unit FE	X	\checkmark	✓	✓	✓	✓	✓
Year	X	\checkmark	✓	✓	✓	✓	✓
<i>N</i> Kleibergen-Paap F Hansen-J	11910	11910	11910 34.08 .9193	11910 35 .9753	11910 34.03 .8314	10719 28.84 .9994	9528 29.08 .9873

Standard Errors are Clustered at the CSD x Unit Type x Year level

- IV with 10 km radius generates an average elasticity of -1.68
- $\rho = 0.23$ suggests that households are only moderately attached to their nest

Estimation

Counterfactual: No Greenbelt

- Counterfactual without greenbelt is done by shifting the share of developable land in $\varphi_{iit} = \gamma_0 + \gamma_1 x_{iit}$
- Simulating the model with more elastic supply curves, I find that...
 - Average prices ↑ 2.9% by 2010 due to the Greenbelt
 - With a price-to-rent ratio of 20 for Toronto, this amounts to an ↑ of \$600 a year in rent
 - Explains only 4% of the overall ↑ in prices during this period
 - Total construction ↓ by 13-14k units within the Greenbelt and ↑ by 2k units outside
 - ↓ construction in Greenbelt areas by 20% on average
 - \blacksquare \downarrow the total housing stock in the GTA by 0.6%

No Greenbelt: Δ Housing Construction Across Space

Other Counterfactuals

- C#2: Does a completely restrictive Greenbelt in 2002 have a larger effect?
 - Only slightly, price ↑ 5%
- C#3: Does relaxing zoning restrictions within city mitigate effects?
 - Yes, prices fall when Greenbelt paired with zoning deregulation within the city
- C#4: Do hetero. supply elasticities matter?
 - Yes, effects are three times larger when accounting for heterogeneity
 - Pushing demand onto less elastic locations

Thank You!

Questions or Comments? hempel1@ualberta.ca

Summary Statistics

At the Census Tract Level in 2010

	Mean	Min	Median	Max
Condominiums				
# Units	1,175	5	797	14,042
Δ # Units 2001-2010	303	0	0	12,242
Sale Price (\$)	285,865	63,642	265,275	1,039,340
Δ Sale Price 2001-2010 (%)	56	-47	50	452
Distance to CBD (km)	17	0	17	74
Census Tract Size (acres)	554	13	202	22,962
Undeveloped Land %	4	0	0	90
Greenbelt %	1	0	0	71
Single Family Homes				
# Units	1,437	120	1,185	18,472
Δ # Units 2001-2010	237	0	0	15,048
Sale Price (\$)	498,464	213,926	458,921	1,177,189
Δ Sale Price 2001-2010 (%)	78	5	74	528
Distance to CBD (km)	18	1	17	82
Census Tract Size (acres)	992	30	218	40,857
Undeveloped Land %	6	0	0	94
Greenbelt %	2	0	0	92

■ 714 census tracts with single family homes and 477 census tracts with condominiums

Details of Event Study

- Can compare trajectories of housing development of census tracts inside the Greenbelt to those just outside
 - Units: Single Family Homes
 - Treatment: discrete, > 50% Greenbelt coverage
 - Control: > 25% developable land share in a CT
 - Timing: 2 phases late-2001 and 2005
- Presence of spillovers means this is only a relative effect
 - Greenbelt may push development into control group
 - Magnitude of estimate is not interpretable

Figure: Ontario Greenbelt

Callaway & Sant'Anna (2021) ATTGT's

Figure: Treated in 2001

Figure: Treated in 2005

Continuous TWFE Results

		Undeveloped Land Share					
	20%	25%	30%	35%	40%		
Continuous Treatment	-0.16404	-0.17740	-0.27921**	-0.34771**	-0.39829***		
	(0.11591)	(0.11655)	(0.12362)	(0.13241)	(0.13899)		
N	1617	1365	1197	1071	987		
R ²	0.938	0.940	0.938	0.934	0.931		

Standard errors in parentheses

Standard Errors Clustered at the Census Tract Level

- Greenbelt lowers housing levels in treated areas by 1.5-4% for every 10% of Greenbelt coverage
- Effect grows when comparing to less developed census tracts
- Standard errors clustered at the census tract level

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

Vary Greenbelt Threshold

Figure: TWFE OLS Results by Greenbelt Threshold

Vary Developable Land Threshold

Figure: TWFE OLS Results by Greenbelt Threshold

Housing Development by Greenbelt Group

Figure: Treated Tracts versus Partially Treated Greenbelt Tracts

Urban Growth Centers

Simulated RMA in 2010

Variation in △ Simulated In RMA Across Space

Heterogeneous Supply Elasticity Regression

Estimates of γ_0 and γ_1

	No Controls		With Control Vars		CT FEs	
	IV	IV	OLS	IV	OLS	IV
Baseline = Urban House						
∆ In <i>P</i> - Pre-2005	0.078*** (0.023)	0.034 (0.038)	-0.021 (0.014)	0.048 (0.039)	0.014 (0.012)	0.155* (0.073
Post - 2005	-0.050 (0.031)	-0.056* (0.032)	-0.021 (0.016)	-0.058* (0.032)	-0.031** (0.015)	-0.051 (0.038
Suburban House (> 25% Dev Land)						
$\Delta \ln P$	-0.094 (0.132)	-0.074 (0.132)	0.027 (0.083)	-0.139 (0.148)	-0.015 (0.097)	-0.309 (0.207
∆ In P x % Dev Land	1.291*** (0.399)	1.267*** (0.399)	0.444 (0.280)	1.176*** (0.400)	0.225 (0.349)	0.804
Condominium						
$\Delta \ln P$	0.146*** (0.051)	0.124** (0.058)	0.025* (0.014)	0.033 (0.096)	0.013 (0.013)	-0.060 (0.306
∆In P x % Dev Land	0.696 (0.575)	0.748 (0.563)	0.107 (0.144)	0.586 (0.665)	0.079 (0.139)	0.571 (0.951
$\Delta \ln P \times \text{UGC} = 1$	0.587*** (0.162)	0.607*** (0.159)	0.096** (0.045)	0.613*** (0.162)	-0.013 (0.043)	0.645
Constant		0.004 (0.003)	0.191*** (0.037)	0.129* (0.072)		
Controls	X	X	✓	✓	X	X
CT x Unit FE	X	X	X	X	✓	✓
N Kleibergen-Paap F	10719 37.489	10719 12.372	10719	10719 6.601	10719	10719 1.055
Mean φ (Pre-2005) Mean φ (Post-2005)	0.228 0.161	0.177 0.104	0.014 -0.012	0.145 0.071	0.027 -0.007	0.202 0.140

Standard Errors are Clustered at the CT x Unit Type level

Heritage Designations Over Time

